_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › Python-LinearRegression
|
|
[edit]
1 OLS vs Ridge vs Lasso #Linear Regression 蠍磯蓋 螻襴讀 OLS Ridge, Lasso螳 螳. 讌 cost function るゴ.
覘.. 蠏碁.
[edit]
2 一危 ##iris 一危一誤 襷り鍵 import numpy as np import pandas as pd from sklearn.datasets import load_iris iris = load_iris() iris.data iris.feature_names iris.target iris.target_names iris_df = pd.DataFrame(iris.data, columns=iris.feature_names) iris_df["target"] = iris.target iris_df["target_names"] = iris.target_names[iris.target] iris_df[:5] #誤, ろ語誤 蠍 from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(iris_df, test_size = 0.3) train_set.shape test_set.shape [edit]
3 OLS(ordinary least squares) ## 蠏(豕螻) from sklearn.linear_model import LinearRegression as lm model_ols = lm().fit(X=train_set.ix[:, [2]], y=train_set.ix[:, [3]]) print(model_ols.coef_) print(model_ols.intercept_) #plot import matplotlib.pyplot as plt plt.scatter(train_set.ix[:, [2]], train_set.ix[:, [3]], color='black') plt.plot(test_set.ix[:, [2]], model_ols.predict(test_set.ix[:, [2]])) 蟆郁骸
[edit]
4 Ridge ##Ridge: alpha螳 譟一 螻朱/螻殊 狩. from sklearn.linear_model import Ridge model_ridge = Ridge(alpha=10).fit(X=train_set.ix[:, [2]], y=train_set.ix[:, [3]]) # print(model_ridge.score(X=train_set.ix[:, [2]], y=train_set.ix[:, [3]])) print(model_ridge.score(X=test_set.ix[:, [2]], y=test_set.ix[:, [3]])) #plot import matplotlib.pyplot as plt plt.scatter(train_set.ix[:, [2]], train_set.ix[:, [3]], color='black') plt.plot(test_set.ix[:, [2]], model_ridge.predict(test_set.ix[:, [2]])) [edit]
5 Lasso ##Lasso: alpha螳 譟一 螻朱/螻殊 狩. from sklearn.linear_model import Lasso model_lasso = Lasso(alpha=0.1, max_iter=1000).fit(X=train_set.ix[:, [0,1,2]], y=train_set.ix[:, [3]]) # print(model_lasso.score(X=train_set.ix[:, [0,1,2]], y=train_set.ix[:, [3]])) print(model_lasso.score(X=test_set.ix[:, [0,1,2]], y=test_set.ix[:, [3]])) # 轟煙 print(np.sum(model_lasso.coef_ != 0))
鏤
|
轟 蟆 伎 覓語 伎企. (蠏碁殊) |