_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › ScatterPlot
|
|
library("GGally") ggpairs(train[,3:13], aes(color = is_churn, alpha=0.2))+ theme_bw() [edit]
1 pairs #library(car) spm(~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width | Species, data=iris) pairs(iris, col = c("red", "cornflowerblue", "purple")[iris$Species]) [edit]
2 smoothScatter #朱朱 一(scatter plot)襯 蠏碁Μ覃 れ螻 螳.
plot(x,y) 蠏碁磯, 一危一 襷朱 螳 一危一 覿襯 蠍 企給. smoothScatter() 企 企れ 蠏豪概 蟆 螳 伎. 蠏碁殊 覲企 3螳 蟲一 蟆 .
library(graphics) smoothScatter(x, y) [edit]
3 3D #--https://www.google.com/search?q=pred.surf.3d&rlz=1C1GCEU_koKR892KR892&oq=pred.surf.3d&aqs=chrome..69i57.425j0j7&sourceid=chrome&ie=UTF-8
require(rgl) pred.surf.3d <- function(df, x.nm,y.nm,z.nm, ...){ x <- df[,x.nm]; y <- df[,y.nm]; z<-df[,z.nm] fit <- lm(z ~ x + y + x*y + x^2 + y^2) xnew <- seq(range(x)[1],range(x)[2],len=20) ynew <- seq(range(y)[1],range(y)[2],len=20) df <- expand.grid(x=xnew, y=ynew) df$z <- predict(fit, newdata=df) with(df, surface3d(xnew, ynew, z=df$z, alpha=0.5)) } plot3d(mydata$x, mydata$y, mydata$zl, col=rainbow(1000)) pred.surf.3d(mydata, "x", "y", "z")
鏤
|
瑚 蟆. 覓企Μ 渚 瑚企 豐狩螻 覿 瑚 蟆. 蠏碁Μ螻 蠏碁れ 讌 襷 蟆. (譽襴) |