_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › ErrorBar
|
|
[edit]
2 add.error.bars #add.error.bars <- function(X,Y,SE,w,col=1){ X0 = X; Y0 = (Y-SE); X1 =X; Y1 = (Y+SE); arrows(X0, Y0, X1, Y1, code=3,angle=90,length=w,col=col); } plot(x,y, ylim=c(lwr,upr)) add.error.bars(last(x), last(val), pred$se, 0.1, "red") [edit]
3 geom_errobar #http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/
data(ToothGrowth) head(ToothGrowth) library(plyr) ## Summarizes data. ## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%). ## data: a data frame. ## measurevar: the name of a column that contains the variable to be summariezed ## groupvars: a vector containing names of columns that contain grouping variables ## na.rm: a boolean that indicates whether to ignore NA's ## conf.interval: the percent range of the confidence interval (default is 95%) summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE, conf.interval=.95, .drop=TRUE) { require(plyr) # New version of length which can handle NA's: if na.rm==T, don't count them length2 <- function (x, na.rm=FALSE) { if (na.rm) sum(!is.na(x)) else length(x) } # This does the summary. For each group's data frame, return a vector with # N, mean, and sd datac <- ddply(data, groupvars, .drop=.drop, .fun = function(xx, col) { c(N = length2(xx[[col]], na.rm=na.rm), mean = mean (xx[[col]], na.rm=na.rm), sd = sd (xx[[col]], na.rm=na.rm) ) }, measurevar ) # Rename the "mean" column datac <- rename(datac, c("mean" = measurevar)) datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean # Confidence interval multiplier for standard error # Calculate t-statistic for confidence interval: # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1 ciMult <- qt(conf.interval/2 + .5, datac$N-1) datac$ci <- datac$se * ciMult return(datac) } dfc <- summarySE(ToothGrowth, measurevar="len", groupvars=c("supp","dose")) library(ggplot2) pd <- position_dodge(.1) ggplot(dfc, aes(x=dose, y=len, colour=supp)) + geom_errorbar(aes(ymin=len-se, ymax=len+se), width=.1, position=pd) + geom_line(position=pd) + geom_point(position=pd) pd <- position_dodge(.1) dfc2 <- dfc dfc2$dose <- factor(dfc2$dose) # Use 95% confidence intervals instead of SEM ggplot(dfc2, aes(x=dose, y=len, fill=supp)) + geom_bar(position=position_dodge(), stat="identity") + geom_errorbar(aes(ymin=len-ci, ymax=len+ci), width=.2, # Width of the error bars position=position_dodge(.9))
鏤
|
襦 蟆れ 覲企 蟆襷 譴 蟆 . (覯襦) |