_覓 | 覦覈襦 | 豕蠏手 | 殊螳 | 譯殊碁 |
FrontPage › 蠏炎
|
|
[edit]
1 (skewness) # 覿 觜豺 襯 豸′ 豌
skew.f<-function(x) { x<-as.matrix(x) n<-nrow(x) m<-cov.wt(x)$center S<-cov.wt(x,method="ML")$cov SI<-solve(S) skew<-0 for(r in 1:n) { for(s in 1:n) { skew<-skew+(t(x[r,]-m)%*%SI%*%(x[s,]-m))^3 } } skew/(n^2) } [edit]
2 豌(kurtosis) #豌 覿 覿覿 襯 豸′ 豌
kurtosis.f<-function(x) { x<-as.matrix(x) n<-nrow(x) m<-cov.wt(x)$center S<-cov.wt(x,method="ML")$cov SI<-solve(S) kurtosis<-0 for(r in 1:n) { kurtosis<-kurtosis+( t(x[r,]-m) %*% SI %*% (x[r,]-m) )^2 } kurtosis/n } [edit]
3 蠏 蟆 #normality.f<-function(x,alpha=0.05) { n<-nrow(x) p<-ncol(x) m<-(p*(p+1)*(p+2))/6 b1<-skew.f(x) p.val<-1-pchisq((n*b1)/6,m) cat("Skewness is ",b1,"and P-value is ",p.val,".\n") if(p.val < alpha) cat("Reject the normality.\n") else cat("Don't reject the normality.\n") }
れ螻 螳 .
> source("normality.f") > source("skew.f") > source("kurtosis.f") > cork.d <-read.table("cork.d", header=T) > normality.f(cork.d) Skewness is 4.476382 and P-value is 0.4036454 . Don't reject the normality. [edit]
4 豺伎伎螻 蠏碁 #chiplot.f<-function(x) { n<-nrow(x) p<-ncol(x) mah<-sort(mahalanobis(x,mean(x),var(x))) arr<-seq(from=1/(2*n),length=n,by=1/n); chi.per<-qchisq(arr,p) plot(mah,chi.per,xlab="Ordered Mahalanobis distance",ylab="Chi-sqare percentile"); } > source("chiplot.f") > chiplot.f(cork.d) [edit]
5 覯蠏碁 #betaplot.f<-function(x) { n<-nrow(x) p<-ncol(x) alpha<-(p-2)/(2*p) beta<-(n-p-3)/(2*(n-p-1)) mah<-sort((n/(n-1)^2)*mahalanobis(x,mean(x),var(x))) start<-(1-alpha)/(n-alpha-beta+1) step<-1/(n-alpha-beta+1) arr<-seq(from=start,length=n,by=step) beta.per<-qbeta(arr,alpha,beta) plot(mah,beta.per,xlab="Ordered b_r",ylab="Beta percentile") } > source("betaplot.f") > betaplot.f(cork.d) 蠏煙 螳讌螻 朱, 蠎襴 覿覿 所 讌ъ 蟆朱 伎 .
[edit]
6 Shapiro 蟆 #
> source("rftn.f") > rad.d <-read.table("rad.d", header=T) > shapiro.test(rad.d$open) Shapiro-Wilk normality test data: rad.d$open W = 0.8292, p-value = 1.977e-05 p-value < 0.05 企襦 蠏覿襯 磯ゴ讌 .
[edit]
7 Box-Cox Transformation #蠏 覿 螳蟾襦 覲 覦覯
mult.f<-function(lambda, x) { n<-nrow(x) p<-ncol(x) H<-rep(1,n)%*%t(rep(1,n))/n Y<-matrix(0,n,p) for(r in 1:n) { for(i in 1:p) { if( lambda[i] == 0 ) Y[r,i]<-log(x[r,i]) else Y[r,i]<-(x[r,i]^lambda[i] - 1)/lambda[i] } } Z<-matrix(0,n,p) for(i in 1:p) { a<-(prod(x[,i]))^((lambda[i]-1)/n) Z[,i]<-Y[,i]/a } log(prod(eigen(t(Z)%*%(diag(n)-H)%*%Z)$values)) } univ.f<-function(lambda, x) { n<-length(x) H<-rep(1,n) %*% t(rep(1,n))/n Y<-rep(0,n) for(r in 1:n) { if( lambda == 0 ) Y[r]<-log(x[r]) else Y[r]<-(x[r]^lambda-1)/lambda } Y<-Y/(prod(x)^((lambda-1)/n)) t(Y)%*%(diag(n)-H)%*%Y } boxcox.f<-function(x) { x<-as.matrix(x) p<-ncol(x) sp<-rep(1,p) for(i in 1:p) { sp[i]<-nlminb(objective=univ.f,start=sp[i],x=x[,i])$par } lambda=nlminb(objective=mult.f,start=sp,x=x)$par cat("Box-Cox parameters : ",lambda,"\n"); } > source("boxcox.f") > source("univ.f") > source("mult.f") > rad.d <-read.table("rad.d", header=T) > chiplot.f(rad.d) > boxcox.f(rad.d) Box-Cox parameters : 0.1607892 0.1511725
> boxcox_trans.d <- rad.d > boxcox_trans.d$closed <- (rad.d$closed ^ 0.16 - 1) / 0.16 > boxcox_trans.d$open <- (rad.d$open ^ 0.15 - 1) / 0.15 > boxcox_trans.d closed open 1 -1.6362440 -1.1015160 2 -1.9983371 -2.0210313 3 -1.4996718 -1.1015160 4 -1.9260564 -1.9470281 5 -2.3799621 -1.9470281 6 -1.7980629 -1.8161732 7 -2.0777107 -2.0210313 8 -2.3799621 -1.9470281 9 -2.0777107 -2.0210313 10 -1.9260564 -1.9470281 11 -2.1659062 -2.1928988 ... ... > chiplot.f(boxcox_trans.d) 覃..
install.packages("TeachingDemos") library("TeachingDemos") set.seed(12345) x <- rnorm(150,1,1) e <- rnorm(150,0,2) y <- (.6 *x + 13 + e)^3 hist(y) hist(bct(y, 0.39)) shapiro.test(bct(y, 0.39)) 企蟆.. bct 2覯讌 襷り覲 lamda襯 譟一(0.1~0.9) 螳覃伎 蠏覿襦 襷..
鏤
|
讌れ 襷 螳 企. 誤覦願 蟆 蟆伎 襷. 豺蟲れ 企 蟆企. (襦) |