

Diagnosing and Resolving Spinlock
Contention on SQL Server

Microsoft Corporation

Published: June, 2011

Summary
This paper provides in-depth information about the methodology the Microsoft SQL Server
Customer Advisory Team (SQLCAT) team uses to identify and resolve issues related to spinlock
contention observed when running SQL Server 2008 and SQL Server 2008 R2 applications on
high-concurrency systems.

Copyright

This document is provided “as-is”. Information and views expressed in this document, including

URL and other Internet Web site references, may change without notice. You bear the risk of

using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real

association or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any

Microsoft product. You may copy and use this document for your internal, reference purposes.

© 2011 Microsoft Corporation. All rights reserved.

Contents

Diagnosing and Resolving Spinlock Contention on SQL Server ... 4

What's in this paper? .. 4

Acknowledgments .. 4

Diagnosing and Resolving SpinLock Contention Issues ... 5

In This Section .. 5

Symptoms and Causes of SQL Server Spinlock Contention .. 6

Symptoms and Causes of SQL Server Spinlock Contention ... 6

Symptoms of SQL Server Spinlock Contention ... 6

Typical Scenarios for SQL Server Spinlock Contention... 9

Diagnosing SQL Server Spinlock Contention .. 12

Diagnosing SQL Server Spinlock Contention .. 12

Walkthrough: Diagnosing a Spinlock Contention Issue ... 13

Options and Workarounds for Handling SQL Server Spinlock Contention 19

Appendix A: Automating the Process of Capturing Memory Dumps to Analyze Spinlock

Contention .. 20

SQL Query for Capturing Memory Dumps ... 21

Appendix B: Capturing Spinlocks Statistics Over a Specific Time Period..................................... 26

4

Diagnosing and Resolving Spinlock
Contention on SQL Server

Welcome to the Diagnosing and Resolving Spinlock Contention on SQL Server paper. While

working with mission critical customer systems the Microsoft SQL Server Customer Advisory

Team (SQLCAT) have developed a methodology which we use to identify and resolve particular

resource contention issues observed when running SQL Server 2008 and SQL Server 2008 R2

on high concurrency systems.

We created this guide to provide in-depth information about identifying and resolving resource

contention issues related to spinlock contention observed when running SQL Server 2008

applications on high concurrency systems with certain workloads.

The recommendations and best practices documented here are based on real-world experience

during the development and deployment of real world OLTP systems.

To download a copy of this guide in chm, pdf, or docx form, go to

http://go.microsoft.com/fwlink/?LinkId=223366.

This paper applies to SQL Server 2005 and later.

What's in this paper?
This guide describes how to identify and resolve spinlock contention issues observed when

running SQL Server 2008 applications on high concurrency systems with certain workloads.

Specifically, this guide includes the following main section:

 Diagnosing and Resolving SpinLock Contention Issues – The Diagnosing and Resolving

SpinLock Contention Issues section analyzes analyze the lessons learned by the SQLCAT

team from diagnosing and resolving spinlock contention issues.

Acknowledgments
We in the SQL Server User Education team gratefully acknowledge the outstanding contributions

of the following individuals for providing both technical feedback as well as a good deal of content

for this paper:

Authors

 Ewan Fairweather, Microsoft SQLCAT

 Mike Ruthruff, Microsoft SQLCAT

Contributors

 Fabricio Voznika, Microsoft Development

 Jack Richins, Microsoft Development

Note

http://go.microsoft.com/fwlink/?LinkId=223366

5

 Thomas Kejser, Microsoft Program Management

Reviewers

 Prem Mehra, Microsoft Program Management

 Steve Howard, Microsoft Program Management

 Paul S. Randal, SQLskills.com

 Kun Chen, Microsoft Development

 Gus Apostol, Microsoft Program Management

 Sanjay Mishra, Microsoft Program Management

 Alexei Khalyako, Microsoft Program Management

Diagnosing and Resolving SpinLock
Contention Issues

Historically, commodity Windows Server computers have utilized only one or two

microprocessor/CPU chips, and CPUs have been designed with only a single processor or “core”.

Increases in computer processing capacity have been achieved through the use of faster CPUs,

made possible largely through advancements in transistor density. Following “Moore‟s Law”,

transistor density or the number of transistors which can be placed on an integrated circuit have

consistently doubled every 2 years since the development of the first general purpose single chip

CPU in 1971. In recent years, the traditional approach of increasing computer processing

capacity with faster CPUs has been augmented by building computers with multiple CPUs. As of

this writing, the Intel Nehalem CPU architecture accommodates up to 8 cores per CPU, which

when used in an 8 socket system can then be doubled to 128 logical processors through the use

of hyper-threading technology. As the number of logical processors on x86 compatible computers

increases so too does the possibility that concurrency related issues may occur when logical

processors compete for resources. This guide describes how to identify and resolve particular

resource contention issues observed when running SQL Server 2008 and SQL Server 2008 R2

applications on high concurrency systems with some workloads.

In this section we will analyze the lessons learned by the SQLCAT team from diagnosing and

resolving spinlock contention issues, which are one class of concurrency issues observed in real

customer workloads on high scale systems.

In This Section
 Symptoms and Causes of SQL Server Spinlock Contention

 Diagnosing SQL Server Spinlock Contention

 Options and Workarounds for Handling SQL Server Spinlock Contention

 Appendix A: Automating the Process of Capturing Memory Dumps to Analyze Spinlock

Contention

 Appendix B: Capturing Spinlocks Statistics Over a Specific Time Period

6

Symptoms and Causes of SQL Server
Spinlock Contention

This section describes how to diagnose issues with “spinlock contention”, which can be

detrimental to the performance of an OLTP application running on SQL Server 2008 R2.

Spinlock diagnosis and troubleshooting should be considered an advanced topic which requires

knowledge of debugging tools and Windows internals. For the remainder of this topic it will be

assumed that the reader has some level of knowledge or familiarity with these. Many of the

spinlock types are undocumented and interpreting these requires knowledge of SQL Engine

internals.

This paper is not meant to serve as documentation of all spinlock types. The intention of this

paper is to provide the reader with the tools to investigate this type of contention and an

understanding of how to determine if the amount of contention being observed is problematic. We

will discuss some common scenarios and how best to approach and handle them.

Symptoms and Causes of SQL Server Spinlock
Contention
Spinlocks are lightweight synchronization primitives which are used to protect access to data

structures. Spinlocks are not unique to SQL Server. They are generally used when it is expected

that access to a given data structure will need to be held for a very short period of time. When a

thread attempting to acquire a spinlock is unable to obtain access it executes in a loop

periodically checking to determine if the resource is available instead of immediately yielding.

After some period of time a thread waiting on a spinlock will yield before it is able to acquire the

resource in order to allow other threads running on the same CPU to execute. This is known as a

backoff and will be discussed in more depth later in this paper.

SQL Server utilizes spinlocks to protect access to some of its internal data structures. These are

used within the engine to serialize access to certain data structures in a similar fashion to latches.

The main difference between a latch and a spinlock is the fact that spinlocks will spin (execute a

loop) for a period of time checking for availability of a data structure while a thread attempting to

acquire access to a structure protected by a latch will immediately yield if the resource is not

available. Yielding requires context switching of a thread off the CPU so that another thread can

execute. This is a relatively expensive operation and for resources that are held for a very short

duration it is more efficient overall to allow a thread to execute in a loop periodically checking for

availability of the resource.

Symptoms of SQL Server Spinlock Contention
On any busy high concurrency system it is normal to see active contention on frequently

accessed structures that are protected by spinlocks. This is only considered problematic when

the contention is such that it introduces significant CPU overhead. Spinlock statistics are exposed

7

by the sys.dm_os_spinlock_stats Dynamic Management View (DMV) within SQL Server. For

example, this query yields the following output:

More details about interpreting the information returned by this DMV will be discussed

later in this paper.

select * from sys.dm_os_spinlock_stats

order by spins desc

The statistics exposed by this query are described as follows:

Column Description

Collisions This value is incremented each time a thread

attempts to access a resource which is

protected by a spinlock and is “blocked”

because another thread currently holds the

spinlock.

Spins This value is incremented for each time a

thread executes a loop while waiting for a

spinlock to become available. This is a

measure of the amount of work a thread does

while it is trying to acquire a resource.

Spins_per_collision Ratio of spins per collision.

Sleep time Related to back-off events; not relevant to

techniques described in this white paper

however.

Backoffs Occurs when a “spinning” thread that is

Note

8

Column Description

attempting to access a held resource has

determined that it needs to allow other threads

on the same CPU to execute.

For purposes of this discussion, statistics of particular interest are the number of collisions, spins

and backoff events that occur within a specific period when the system is under heavy load.

When a thread attempts to access a resource protected by a spinlock a collision occurs. When a

collision occurs the collision count is incremented and the thread will begin to spin in a loop and

periodically check if the resource is available. Each time the thread spins (loops) the spin count

is incremented.

Spins per collision is a measure of the amount of spins occurring while a spinlock is being held by

a thread and will tell you how many spins are occurring while threads are holding the spinlock.

For example, small spins per collision and high collision count means there is a small amount of

spins occurring under the spinlock and there are many threads contending for it. A large amount

of spins means the time spent spinning in the spinlock code relatively long lived (i.e. the code is

going over a large number of entries in a hash bucket). As contention increases (thus increasing

collision count), the number of spins also increases.

Backoffs may be thought of in a similar fashion to spins. By design, to avoid excessive CPU

waste, spinlocks will not continue spinning indefinitely until they can access a held resource. To

ensure a spinlock does not excessively use CPU resource, spinlocks will backoff, or stop spinning

and “sleep”, regardless of if they ever obtain ownership the held resource. This is done to allow

other threads to be scheduled on the CPU in the hope that this.may allow more productive work

to happen. Default behavior for the engine is to spin for a constant time interval first before

performing a backoff. Attempting to obtain a spinlock requires that a state of cache concurrency is

maintained, which is a CPU intensive operation relative to the CPU cost of spinning. Therefore,

attempts to obtain a spinlock are performed sparingly and not performed each time a thread

spins. In SQL Server 2008 R2 certain spinlock types (for example: LOCK_HASH) were improved

by utilizing an exponentially increasing interval between attempts to acquire the spinlock (up to a

certain limit) which often reduces the impact on CPU performance.

The diagram below provides a conceptual view of the spinlock algorithm:

9

Typical Scenarios for SQL Server Spinlock
Contention
Spinlock contention can occur for any number of reasons which may be completely unrelated to

database design decisions. Because spinlocks are used to manage access to internal data

structures, spinlock contention is not manifested in a manner similar to buffer latch contention, for

example, which is directly affected by schema design choices and data access patterns.

The symptom primarily associated with spinlock contention is high CPU consumption as a result

of the large number of spins and many threads attempting to acquire the same spinlock. In

general, this has been observed on systems with >= 24 and most commonly on >= 32 CPU core

systems. As stated before some level of contention on spinlocks is normal for high concurrency

OLTP systems with significant load and there is often a very large number of spins

(billions/trillions) reported from the sys.dm_os_spinlock_stats DMV on systems which have been

running for a long time. Again, observing a high number of spins for any given spinlock type is not

enough information to determine that there is negative impact to workload performance.

10

Symptoms which may indicate spinlock contention:

1. A high number of spins and backoffs are observed for a particular spinlock type.

AND

2. The system is experiencing heavy CPU utilization or spikes in CPU consumption. In heavy

CPU scenarios one may also observe high signal waits on SOS_SCHEDULER_YEILD

(reported by the DMV sys.dm_os_wait_stats).

AND

3. The system is experiencing very high concurrency.

AND

4. The CPU usage and spins are increased disproportionate to throughput.

Even if each of the preceding conditions is true it is still possible that the root cause of

high CPU consumption lies elsewhere. In fact, in the vast majority of the cases increased

CPU will be due to reasons other than spinlock contention. Some of the more common

causes for increased CPU consumption include:

1. Queries which become more expensive over time due to growth of the underlying data

resulting in the need to perform additional logical reads of memory resident data.

2. Changes in query plans resulting in suboptimal execution.

With that said, if each of the conditions listed above is true then it would be advisable to

perform further investigation into possible spinlock contention issues.

One common phenomenon easily diagnosed is a significant divergence in throughput and CPU

usage. Many OLTP workloads have a relationship between (throughput / number of users on the

system) and CPU consumption. High spins observed in conjunction with a significant divergence

of CPU consumption and throughput can be an indication of spinlock contention introducing CPU

overhead. An important thing to note here is that it is also very common to see this type of

divergence on systems when certain queries become more expensive over time. For example,

queries which are issued against datasets which perform more logical reads over time may result

in similar symptoms.

It is critical to rule out other more common causes of high CPU when troubleshooting these types

of problems.

Example:

In the example below there is a nearly linear relationship between CPU consumption and

throughput as measured by transactions per second. It is normal to see some divergence here

because overhead is incurred as any workload ramps up. As illustrated below however, this

divergence becomes quite significant. There is also a precipitous drop in throughput once CPU

consumption reaches 100%.

Important

11

When measuring the number of spins at 3 minute intervals we can see a more exponential than

linear increase in spins which indicates that spinlock contention may be problematic.

As stated previously spinlocks are most common on high concurrency systems which are under

heavy load.

Some of the scenarios that are prone to this issue include:

 Name resolution problems caused by a failure to fully qualify names of objects. For more

information, see Description of SQL Server blocking caused by compile locks

(http://support.microsoft.com/kb/263889). This specific issue is described in more detail within

this paper.

 Contention for lock hash buckets in the lock manager for workloads which frequently access

the same lock (such as a shared lock on a frequently read row). This type of contention

surfaces as a LOCK_HASH type spinlock. In one particular case we found that this problem

surfaced as a result of incorrectly modeled access patterns in a test environment. In this

http://support.microsoft.com/kb/263889

12

environment, more than the expected numbers of threads were constantly accessing the

exact same row due to incorrectly configured test parameters.

 High rate of DTC transactions when there is high degree of latency between the MSDTC

transaction coordinators. This specific problem is documented in detail in the SQLCAT blog

entry Resolving DTC Related Waits and Tuning Scalability of DTC

(http://go.microsoft.com/fwlink/?LinkID=214413).

Diagnosing SQL Server Spinlock Contention

This section provides information for diagnosing SQL Server spinlock contention.

Diagnosing SQL Server Spinlock Contention
The primary tools used to diagnose spinlock contention are:

1. Performance Monitor - Look for high CPU conditions or divergence between throughput and

CPU consumption.

2. The sys.dm_os_spinlock stats DMV - Look for a high number of spins and backoff events

over periods of time.

3. SQL Server Extended Events - Used to track call stacks for spinlocks which are

experiencing a high number of spins.

4. Memory Dumps - In some cases, memory dumps of the SQL Server process and the

Windows Debugging tools. In general, this level of analysis is done when the Microsoft SQL

Server support teams are engaged.

The general technical process for diagnosing SQL Server Spinlock contention is:

1. Step 1 – Determine that there is contention which may be spinlock related (see section

above).

2. Step 2 – Capture statistics from sys.dm_ os_spinlock_stats to find the spinlock type

experiencing the most contention.

3. Step 3 – Obtain debug symbols for sqlservr.exe (sqlservr.pdb) and place the symbols in the

same directory as the SQL Server service .exe file (sqlservr.exe) for the instance of SQL

Server.

In order to see the call stacks for the back off events, you must have symbols for the

particular version of SQL Server that you are running. Symbols for SQL Server are available

on the Microsoft Symbol Server. For more information about how to download symbols from

the Microsoft Symbol Server, see Microsoft Knowledge Base article 311503, Use the

Microsoft Symbol Server to obtain debug symbol files

(http://support.microsoft.com/kb/311503).

4. Step 4 – Use SQL Server Extended Events to trace the back off events for the spinlock types

of interest.

Extended Events provide the ability to track the "backoff" event and capture the call stack for

those operation(s) most prevalently trying to obtain the spinlock. By analyzing the call stack it

http://go.microsoft.com/fwlink/?LinkID=214413
http://support.microsoft.com/kb/311503
http://support.microsoft.com/kb/311503

13

is possible to determine what type of operation is contributing to contention for any particular

spinlock.

Walkthrough: Diagnosing a Spinlock Contention
Issue
The following is a walkthrough of how to use the tools and techniques above to diagnose a

spinlock contention problem in a real world scenario. This is from a customer engagement

running a benchmark test to simulate approximately 6,500 concurrent users on an 8 socket, 64

physical core server with 1 TB of memory.

Symptoms

Periodic spikes in CPU were observed which pushed the CPU utilization to nearly 100%. A

divergence between throughput and CPU consumption was observed leading up to the problem.

By the time that the large CPU spike occurred, a pattern of a very large number of spins occurring

during times of heavy CPU usage at particular intervals was established.

This was an extreme case in which the contention was such that it created a spinlock convoy

condition. A convoy occurs when threads can no longer make progress servicing the workload

but instead spend all processing resources attempting to gain access to the lock. The

performance monitor log illustrates this divergence between transaction log throughput and CPU

consumption, and ultimately the very large spike in CPU utilization.

14

After querying sys.dm_os_spinlock_stats to determine the existence of significant contention on

SOS_CACHESTORE, an extended events script was used to measure the number of backoff

events for the spinlock types of interest.

Name Collisions Spins Spins per

collision

Backoffs

SOS_CACHESTORE 14,752,117 942,869,471,526 63,914 67,900,620

SOS_SUSPEND_QUEUE 69,267,367 473,760,338,765 6,840 2,167,281

LOCK_HASH 5,765,761 260,885,816,584 45,247 3,739,208

MUTEX 2,802,773 9,767,503,682 3,485 350,997

SOS_SCHEDULER 1,207,007 3,692,845,572 3,060 109,746

The most straightforward way to quantify the impact of the spins is to look at the number of

backoff events exposed by sys.dm_os_spinlock_stats over the same 1 minute interval for the

spinlock type(s) with the highest number of spins. This is the best method for determining

significant contention as it indicates when threads are exhausting the spin limit while waiting to

acquire the spinlock. The script listed below illustrates an advanced technique that utilizes

extended events to measure related backoff events and identify the specific code paths where the

contention lies.

For more information about Extended Events in SQL Server 2008 R2 see Introducing SQL Server

Extended Events (http://go.microsoft.com/fwlink/p/?LinkID=213475).

Script

/*

This Scriptis provided "AS IS" with no warranties, and confers no rights.

This script will monitor for backoff events over a given period of time and

capture the code paths (callstacks) for those.

--Find the spinlock types

select map_value, map_key, name from sys.dm_xe_map_values

where name = 'spinlock_types'

order by map_value asc

--Example: Get the type value for any given spinlock type

select map_value, map_key, name from sys.dm_xe_map_values

http://go.microsoft.com/fwlink/p/?LinkID=213475
http://go.microsoft.com/fwlink/p/?LinkID=213475

15

where map_value IN ('SOS_CACHESTORE', 'LOCK_HASH', 'MUTEX')

Examples:

61LOCK_HASH

144 SOS_CACHESTORE

08MUTEX

*/

--create the even session that will capture the callstacks to a bucketizer

--more information is available in this reference: http://msdn.microsoft.com/en-

us/library/bb630354.aspx

create event session spin_lock_backoff on server

 add event sqlos.spinlock_backoff (action (package0.callstack)

where

type = 61--LOCK_HASH

or type = 144--SOS_CACHESTORE

or type = 8--MUTEX

)

 add target package0.asynchronous_bucketizer (

 set filtering_event_name='sqlos.spinlock_backoff',

 source_type=1, source='package0.callstack')

 with (MAX_MEMORY=50MB, MEMORY_PARTITION_MODE = PER_NODE)

--Ensure the session was created

select * from sys.dm_xe_sessions

where name = 'spin_lock_backoff'

--Run this section to measure the contention

alter event session spin_lock_backoff on server state=start

--wait to measure the number of backoffs over a 1 minute period

waitfor delay '00:01:00'

16

--To view the data

--1. Ensure the sqlservr.pdb is in the same directory as the sqlservr.exe

--2. Enable this trace flag to turn on symbol resolution

DBCC traceon (3656, -1)

--Get the callstacks from the bucketize target

select event_session_address, target_name, execution_count, cast (target_data as XML)

from sys.dm_xe_session_targets xst

inner join sys.dm_xe_sessions xs on (xst.event_session_address = xs.address)

where xs.name = 'spin_lock_backoff'

--clean up the session

alter event session spin_lock_backoff on server state=stop

drop event session spin_lock_backoff on server

By analyzing the output we can see the call stacks for the most common code paths for the

SOS_CACHESTORE spins. The script was run a couple of different times during the time when

CPU utilization was high to check for consistency in the call stacks returned. Notice that the call

stacks with the highest slot bucket count are common between the two outputs (35,668 and

8,506). These have a “slot count” which is two orders of magnitude greater than the next highest

entry. This indicates a code path of interest.

It is not uncommon to see call stacks returned by the script above. When the script is run

for 1 minute we have observed that stacks with a slot count >1000 are likely to be

problematic and stacks with a slot count >10,000 are very likely to be problematic.

The formatting of the following output has been cleaned up for readability purposes.

Output 1

<BucketizerTarget truncated="0" buckets="256">

<Slot count="35668" trunc="0">

 <value>

 XeSosPkg::spinlock_backoff::Publish

 SpinlockBase::Sleep

 SpinlockBase::Backoff

 Spinlock<144,1,0>::SpinToAcquireOptimistic

Note

Note

17

 SOS_CacheStore::GetUserData

 OpenSystemTableRowset

 CMEDScanBase::Rowset

 CMEDScan::StartSearch

 CMEDCatalogOwner::GetOwnerAliasIdFromSid

 CMEDCatalogOwner::LookupPrimaryIdInCatalog

CMEDCacheEntryFactory::GetProxiedCacheEntryByAltKey

 CMEDCatalogOwner::GetProxyOwnerBySID

 CMEDProxyDatabase::GetOwnerBySID

 ISECTmpEntryStore::Get

 ISECTmpEntryStore::Get

 NTGroupInfo::`vector deleting destructor'

 </value>

</Slot>

<Slot count="752" trunc="0">

 <value>

 XeSosPkg::spinlock_backoff::Publish

 SpinlockBase::Sleep

 SpinlockBase::Backoff

 Spinlock<144,1,0>::SpinToAcquireOptimistic

 SOS_CacheStore::GetUserData

 OpenSystemTableRowset

 CMEDScanBase::Rowset

 CMEDScan::StartSearch

 CMEDCatalogOwner::GetOwnerAliasIdFromSid CMEDCatalogOwner::LookupPrimaryIdInCatalog

CMEDCacheEntryFactory::GetProxiedCacheEntryByAltKey

CMEDCatalogOwner::GetProxyOwnerBySID

 CMEDProxyDatabase::GetOwnerBySID

 ISECTmpEntryStore::Get

 ISECTmpEntryStore::Get

 ISECTmpEntryStore::Get

 </value>

 </Slot>

18

Output 2

<BucketizerTarget truncated="0" buckets="256">

<Slot count="8506" trunc="0">

 <value>

 XeSosPkg::spinlock_backoff::Publish

 SpinlockBase::Sleep+c7 [@ 0+0x0 SpinlockBase::Backoff

Spinlock<144,1,0>::SpinToAcquireOptimistic

 SOS_CacheStore::GetUserData

 OpenSystemTableRowset

 CMEDScanBase::Rowset

 CMEDScan::StartSearch

 CMEDCatalogOwner::GetOwnerAliasIdFromSid CMEDCatalogOwner::LookupPrimaryIdInCatalog

CMEDCacheEntryFactory::GetProxiedCacheEntryByAltKey CMEDCatalogOwner::GetProxyOwnerBySID

 CMEDProxyDatabase::GetOwnerBySID

 ISECTmpEntryStore::Get

 ISECTmpEntryStore::Get

 NTGroupInfo::`vector deleting destructor'

</value>

 </Slot>

<Slot count="190" trunc="0">

 <value>

 XeSosPkg::spinlock_backoff::Publish

 SpinlockBase::Sleep

 SpinlockBase::Backoff

 Spinlock<144,1,0>::SpinToAcquireOptimistic

 SOS_CacheStore::GetUserData

 OpenSystemTableRowset

 CMEDScanBase::Rowset

 CMEDScan::StartSearch

 CMEDCatalogOwner::GetOwnerAliasIdFromSid CMEDCatalogOwner::LookupPrimaryIdInCatalog

CMEDCacheEntryFactory::GetProxiedCacheEntryByAltKey CMEDCatalogOwner::GetProxyOwnerBySID

 CMEDProxyDatabase::GetOwnerBySID

 ISECTmpEntryStore::Get

 ISECTmpEntryStore::Get

19

 ISECTmpEntryStore::Get

 </value>

 </Slot>

In the above example the stacks of most interest are those with the highest Slot Counts (35,668

and 8,506) which in fact have a slot count > 1000.

Now the question may be, “what do I do with this information”? In general, deep knowledge of the

SQL Server engine is required to make use of the callstack information and so at this point the

troubleshooting process moves into a gray area. In this particular case, by looking at the call

stacks, we can see that the code path where the issue occurs is related to security and metadata

lookups (As evident by the following stack frames CMEDCatalogOwner::GetProxyOwnerBySID

& CMEDProxyDatabase::GetOwnerBySID).

In isolation it is difficult to use this information to resolve the problem but it does give us some

ideas where to focus additional troubleshooting to isolate the issue further.

Because this issue looked to be related to code paths which perform security related checks we

decided to run a test in which the application user connecting to the database was granted

sysadmin privileges. While this is never recommended in a production environment, in our test

environment it proved to be a useful troubleshooting step. When the sessions were run using

elevated privileges (sysadmin), the CPU spikes related to contention disappeared. Final

resolution of this problem required involvement of the SQL Server customer support team and

was determined to be related to a bug in SQL Server. This bug has since been corrected and a

fix for the issue has been made publically available in SQL Server 2008 R2 CU 5 and in SQL

Server 2008 SP2 CU 2.

Options and Workarounds for Handling SQL
Server Spinlock Contention

Clearly, troubleshooting spinlock contention can be a non-trivial task. There is no “one common

best option” to approaching this. The first step in troubleshooting and resolving any performance

problem is to identify root cause. Using the techniques and tools described in this paper are is

the first step in performing the analysis needed to understand the spinlock related contention

points.

As new versions of SQL Server are developed the engine continues to improve scalability by

implementing code that is better optimized for high concurrency systems. SQL Server 2008 R2

introduced many optimizations for high concurrency systems, one of which being exponential

backoff for the most common contention points. There are specific enhancements in the next

release of SQL Server (code named “Denali”) which specifically improve this particular area by

leveraging exponential backoff algorithms for all spinlocks within the engine.

When designing high end applications which need extreme performance and scale one thing to

always keep in in the back of your mind is how to keep the code path needed within SQL Server

20

as short as possible. Just as one would do this in application development, the same technique

can be leveraged by following SQL Server best practices. A shorter code path means less work is

performed by the database engine and will naturally avoid contention points. Many best practices

have a side effect of reducing the amount of work required of the engine, and hence, result

optimizing workload performance.

Taking a couple best practices from earlier in this paper as examples:

1. Fully Qualified Names: Fully qualifying names of all objects will result in removing the need

for SQL Server to execute code paths that are required to resolve names. We have

observed contention points also on the SOS_CACHESTORE spinlock type encountered

when not utilizing fully qualified names in calls to stored procedures. Failure to fully qualify

these the names results in the need for SQL Server to lookup the default schema for the user

which results in a longer code path required to execute the SQL.

2. Parameterized Queries: Another example is utilizing parameterized queries and stored

procedure calls to reduce the work needed to generate execution plans. This again results in

a shorter code path for execution.

3. LOCK_HASH Contention: Contention on certain lock structure or hash bucket collisions is

unavoidable in some cases. Even though the SQL Server engine partitions the majority of

lock structures, there are still times when acquiring a lock results in access the same hash

bucket. For example, an application the accesses the same row by many threads

concurrently (i.e. reference data). This type of problems can be approached by techniques

which either scale out this reference data within the database schema or leverage NOLOCK

hints when possible.

The first line of defensive in tuning SQL Server workloads is always the standard tuning practices

(e.g. indexing, query optimization, I/O optimization, etc…). However, in addition to the standard

tuning one would perform, following practices that reduce the amount of code needed to perform

operations is an important approach. Even when best practices are followed, there is still a

chance that spinlock contention may occur on very busy high concurrency systems. Use of the

tools and techniques in this paper can help to isolate or rule out these types of problems and

determine when it is necessary to engage the right Microsoft resources to help.

Hopefully these techniques will provide both a useful methodology for this type of troubleshooting

and insight into some of the more advanced performance profiling techniques available with SQL

Server.

Appendix A: Automating the Process of
Capturing Memory Dumps to Analyze
Spinlock Contention

The following extended events script has proven to be useful to automate the collection of

memory dumps when spinlock contention becomes significant. In some cases memory dumps

will be required to perform a complete diagnosis of the problem or will be requested by Microsoft

support teams to perform in depth analysis. In SQL Server 2008 there is a limit of 16 frames in

21

callstacks captured by the bucketizer, which may not be deep enough to determine exactly where

in the engine the callstack is being entered from. This is improved in the next version of SQL

Server codename „Denali‟ by increasing the number of frames in callstacks captured by the

bucketizer to 32.

SQL Query for Capturing Memory Dumps
The following SQL script can be used to automate the process of capturing memory dumps to

help analyze spinlock contention:

/*

This script is provided "AS IS" with no warranties, and confers no rights.

Use: This procedure will monitor for spinlocks with a high number of backoff events

 over a defined time period which would indicate that there is likely significant

 spin lock contention.

 Modify the variables noted below before running.

Requires:

 xp_cmdshell to be enabled

 sp_configure 'xp_cmd', 1

 go

 reconfigure

 go

****************/

use tempdb

go

if object_id('sp_xevent_dump_on_backoffs') is not null

 drop proc sp_xevent_dump_on_backoffs

go

create proc sp_xevent_dump_on_backoffs

(

22

 @sqldumper_path nvarchar(max) = '"c:\Program

Files\Microsoft SQL Server\100\Shared\SqlDumper.exe"'

 ,@dump_threshold int = 500 --capture

mini dump when the slot count for the top bucket exceeds this

 ,@total_delay_time_seconds int = 60 --poll for

60 seconds

 ,@PID int = 0

 ,@output_path nvarchar(max) = 'c:\'

 ,@dump_captured_flag int = 0 OUTPUT

)

as

/*

 --Find the spinlock types

 select map_value, map_key, name from sys.dm_xe_map_values

 where name = 'spinlock_types'

 order by map_value asc

 --Example: Get the type value for any given spinlock type

 select map_value, map_key, name from sys.dm_xe_map_values

 where map_value IN ('SOS_CACHESTORE', 'LOCK_HASH', 'MUTEX')

*/

if exists (select * from sys.dm_xe_session_targets xst

 inner join sys.dm_xe_sessions xs on (xst.event_session_address =

xs.address)

 where xs.name = 'spinlock_backoff_with_dump')

 drop event session spinlock_backoff_with_dump on server

create event session spinlock_backoff_with_dump on server

 add event sqlos.spinlock_backoff (action (package0.callstack)

 where

 type = 61 --LOCK_HASH

 --or type = 144 --SOS_CACHESTORE

 --or type = 8 --MUTEX

23

 --or type = 53 --LOGCACHE_ACCESS

 --or type = 41 --LOGFLUSHQ

 --or type = 25 --SQL_MGR

 --or type = 39 --XDESMGR

)

 add target package0.asynchronous_bucketizer (

 set filtering_event_name='sqlos.spinlock_backoff',

 source_type=1, source='package0.callstack')

 with (MAX_MEMORY=50MB, MEMORY_PARTITION_MODE = PER_NODE)

alter event session spinlock_backoff_with_dump on server state=start

declare @instance_name nvarchar(max) = @@SERVICENAME

declare @loop_count int = 1

declare @xml_result xml

declare @slot_count bigint

declare @xp_cmdshell nvarchar(max) = null

--start polling for the backoffs

print 'Polling for: ' + convert(varchar(32), @total_delay_time_seconds) + ' seconds'

while (@loop_count < CAST (@total_delay_time_seconds/1 as int))

begin

 waitfor delay '00:00:01'

 --get the xml from the bucketizer for the session

 select @xml_result= CAST(target_data as xml)

 from sys.dm_xe_session_targets xst

 inner join sys.dm_xe_sessions xs on (xst.event_session_address = xs.address)

 where xs.name = 'spinlock_backoff_with_dump'

 --get the highest slot count from the bucketizer

 select @slot_count = @xml_result.value(N'(//Slot/@count)[1]', 'int')

24

 --if the slot count is higher than the threshold in the one minute period

 --dump the process and clean up session

 if (@slot_count > @dump_threshold)

 begin

 print 'exec xp_cmdshell ''' + @sqldumper_path + ' ' + convert(nvarchar(max),

@PID) + ' 0 0x800 0 c:\ '''

 select @xp_cmdshell = 'exec xp_cmdshell ''' + @sqldumper_path + ' ' +

convert(nvarchar(max), @PID) + ' 0 0x800 0 ' + @output_path + ' '''

 exec sp_executesql @xp_cmdshell

 print 'loop count: ' + convert (varchar(128), @loop_count)

 print 'slot count: ' + convert (varchar(128), @slot_count)

 set @dump_captured_flag = 1

 break

 end

 --otherwise loop

 set @loop_count = @loop_count + 1

end

--see what was collected then clean up

DBCC traceon (3656, -1)

select event_session_address, target_name, execution_count, cast (target_data as XML)

from sys.dm_xe_session_targets xst

 inner join sys.dm_xe_sessions xs on (xst.event_session_address = xs.address)

where xs.name = 'spinlock_backoff_with_dump'

alter event session spinlock_backoff_with_dump on server state=stop

drop event session spinlock_backoff_with_dump on server

go

/* CAPTURE THE DUMPS

**/

--Example: This will run continuously until a dump is created.

25

declare @sqldumper_path nvarchar(max) = '"c:\Program

Files\Microsoft SQL Server\100\Shared\SqlDumper.exe"'

declare @dump_threshold int = 300 --capture

mini dump when the slot count for the top bucket exceeds this

declare @total_delay_time_seconds int = 60 --poll for

60 seconds

declare @PID int = 0

declare @flag tinyint = 0

declare @dump_count tinyint = 0

declare @max_dumps tinyint = 3 --stop after

collecting this many dumps

declare @output_path nvarchar(max) = 'c:\' --no spaces

in the path please :)

--Get the process id for sql server

declare @error_log table (LogDate datetime,

 ProcessInfo varchar(255),

 Text varchar(max)

)

insert into @error_log

 exec ('xp_readerrorlog 0, 1, ''Server Process ID''')

select @PID = convert(int, (REPLACE(REPLACE(Text, 'Server Process ID is ', ''), '.',

'')))

 from @error_log where Text like ('Server Process ID is%')

print 'SQL Server PID: ' + convert (varchar(6), @PID)

--Loop to monitor the spinlocks and capture dumps. while (@dump_count < @max_dumps)

begin

 exec sp_xevent_dump_on_backoffs @sqldumper_path = @sqldumper_path,

 @dump_threshold = @dump_threshold,

 @total_delay_time_seconds =

@total_delay_time_seconds,

 @PID = @PID,

26

 @output_path = @output_path,

 @dump_captured_flag = @flag OUTPUT

 if (@flag > 0)

 set @dump_count=@dump_count + 1

 print 'Dump Count: ' + convert(varchar(2), @dump_count)

 waitfor delay '00:00:02'

end

Appendix B: Capturing Spinlocks Statistics
Over a Specific Time Period

The following script can be used to look at spinlock statistics over a specific time period. Each

time it runs it will return the delta between the current values and previous values collected.

/* Snapshot the current spinlock stats and store so that this can be compared over a time

period

 Return the statistics between this point in time and the last collection point in

time.

 **This data is maintained in tempdb so the connection must persist between each

execution**

 **alternatively this could be modified to use a persisted table in tempdb. if that

 is changed code should be included to clean up the table at some point.**

*/

use tempdb

go

declare @current_snap_time datetime

declare @previous_snap_time datetime

set @current_snap_time = GETDATE()

if not exists(select name from tempdb.sys.sysobjects where name like '#_spin_waits%')

27

 create table #_spin_waits

 (

 lock_name varchar(128)

 ,collisions bigint

 ,spins bigint

 ,sleep_time bigint

 ,backoffs bigint

 ,snap_time datetime

)

--capture the current stats

insert into #_spin_waits

 (

 lock_name

 ,collisions

 ,spins

 ,sleep_time

 ,backoffs

 ,snap_time

)

 select name

 ,collisions

 ,spins

 ,sleep_time

 ,backoffs

 ,@current_snap_time

 from sys.dm_os_spinlock_stats

select top 1 @previous_snap_time = snap_time from #_spin_waits

 where snap_time < (select max(snap_time) from #_spin_waits)

 order by snap_time desc

--get delta in the spin locks stats

select top 10

28

 spins_current.lock_name

 , (spins_current.collisions - spins_previous.collisions) as collisions

 , (spins_current.spins - spins_previous.spins) as spins

 , (spins_current.sleep_time - spins_previous.sleep_time) as sleep_time

 , (spins_current.backoffs - spins_previous.backoffs) as backoffs

 , spins_previous.snap_time as [start_time]

 , spins_current.snap_time as [end_time]

 , DATEDIFF(ss, @previous_snap_time, @current_snap_time) as [seconds_in_sample]

 from #_spin_waits spins_current

 inner join (

 select * from #_spin_waits

 where snap_time = @previous_snap_time

) spins_previous on (spins_previous.lock_name = spins_current.lock_name)

 where

 spins_current.snap_time = @current_snap_time

 and spins_previous.snap_time = @previous_snap_time

 and spins_current.spins > 0

 order by (spins_current.spins - spins_previous.spins) desc

--clean up table

delete from #_spin_waits

where snap_time = @previous_snap_time

